Transcriptional Mechanisms of Proneural Factors and REST in Regulating Neuronal Reprogramming of Astrocytes

نویسندگان

  • Giacomo Masserdotti
  • Sébastien Gillotin
  • Bernd Sutor
  • Daniela Drechsel
  • Martin Irmler
  • Helle F. Jørgensen
  • Steffen Sass
  • Fabian J. Theis
  • Johannes Beckers
  • Benedikt Berninger
  • François Guillemot
  • Magdalena Götz
چکیده

Direct lineage reprogramming induces dramatic shifts in cellular identity, employing poorly understood mechanisms. Recently, we demonstrated that expression of Neurog2 or Ascl1 in postnatal mouse astrocytes generates glutamatergic or GABAergic neurons. Here, we take advantage of this model to study dynamics of neuronal cell fate acquisition at the transcriptional level. We found that Neurog2 and Ascl1 rapidly elicited distinct neurogenic programs with only a small subset of shared target genes. Within this subset, only NeuroD4 could by itself induce neuronal reprogramming in both mouse and human astrocytes, while co-expression with Insm1 was required for glutamatergic maturation. Cultured astrocytes gradually became refractory to reprogramming, in part by the repressor REST preventing Neurog2 from binding to the NeuroD4 promoter. Notably, in astrocytes refractory to Neurog2 activation, the underlying neurogenic program remained amenable to reprogramming by exogenous NeuroD4. Our findings support a model of temporal hierarchy for cell fate change during neuronal reprogramming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The establishment of neuronal properties is controlled by Sox4 and Sox11.

The progression of neurogenesis relies on proneural basic helix-loop-helix (bHLH) transcription factors. These factors operate in undifferentiated neural stem cells and induce cell cycle exit and the initiation of a neurogenic program. However, the transient expression of proneural bHLH proteins in neural progenitors indicates that expression of neuronal traits must rely on previously unexplore...

متن کامل

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

Multi-site phospho-regulation of proneural transcription factors controls proliferation versus differentiation in development and reprogramming

During development of the nervous system, it is essential to co-ordinate the processes of proliferation and differentiation. Basic helix-loop-helix transcription factors play a central role in controlling neuronal differentiation and maturation as well as being components of the combinatorial code that determines neuronal identity. We have recently shown that the ability of the proneural protei...

متن کامل

Recent Progress in Cell Reprogramming Technology for Cell Transplantation Therapy

The discovery of induced pluripotent stem (iPS) cells opened the gate for reprogramming technology with which we can change the cell fate through overexpression of master transcriptional factors. Now we can prepare various kinds of neuronal cells directly induced from somatic cells. It has been reported that overexpression of a neuron-specific transcriptional factors might change the cell fate ...

متن کامل

Effects of spironolactone and fludrocortisone on neuronal and glial toxicity induced by N-methyl-D-Aspartate and chloroquine in cell culture

Spironolactone has produced beneficial effects in animal models of neurodegenerative disorders. However, the underlying mechanisms of this agent on neurons and glia are mostly unknown. Therefore, we aimed to show the effects of spironolactone and fludrocortisone, a mineralocorticosteroid receptor agonist, on neuronal and glial toxicity induced by N-methyl-D-aspartate (NMDA) activation and chlor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015